
A Geometric proof of the Recognition Principle

Sophus Valentin Willumsgaard

November 2022

Contents

1 Introduction 1

2 Algebra in ∞-categories 2
2.1 Monoids . 2
2.2 Commutative monoids and groups 4
2.3 ∞-Operads and modules . 5

3 The Recognition Principle for E1-Groups. 7
3.1 Groups are loop spaces . 8
3.2 Loop spaces are classifying spaces of Groups 9

4 Spectra and their homotopy groups 11
4.1 Reminder of Eckman-Hilton Argument 11
4.2 En-monoids . 12
4.3 Proof of Recognition Principle for En-Groups 14
4.4 Proof of the Recognition Principle for E∞-groups 16

5 Appendix: ∞-Categories and Anima 17

1 Introduction

In this note we will give a proof of the recognition principle for E1,En and E∞-
groups. The theorem tell us that we can recognize these groups as loop spaces of
connected pointed spaces, and connected pointed spaces as classifying spaces of
groups. We will give a construction of the classifying space, making it geometric
properties explicit.

This note is written for the course ”Topics in Algebraic Topology”, and it is
aimed towards (and written by) people new to ∞-categories, and as such there
is an emphasis on how ∞-categorical concepts are being used, and getting used
to the language of ∞-categories. In this spirit, i have included examples of the
definitions and theorems applied to monoids and groups of sets.

1

2 Algebra in ∞-categories

In this section we define monoids, groups, commutative groups and modules.
For a more detailed construction see [Lur17] or [Wag20].

2.1 Monoids

We will first motivate their definitions by recalling the ordinary monoids in a
1-category D with finite products (including a terminal object ∗).

Recall that a monoid (M,µ, i) in D, is a object M with a unit map i : ∗ →M
and µ : M ×M → M , which is unital and associative. If we see the hom-sets
as discrete spaces, the condition of being associative corresponds to having an
homotopy

µ ◦ (idM × µ)
≃−→ µ ◦ (µ× idM)

in the discrete space hom(M ×M ×M,M), since in a discrete space the homo-
topy can only be the identity homotopy.

A monoid in a ∞-category C with finite products should be defined the
same way. However for an ∞-category, the mapping spaces are now animas! In
particular, there can be different homotopies µ ◦ (idM × µ) → µ ◦ (µ × idM).
As such a monoid should come with a choice of a homotopy between these maps.

However when we replace identities with homotopies in our definition, we
can no longer take coherence for granted. In particular, when we multiply 4
copies M4 →M , there are 5 ways of ordering the multiplication.

(ab)(cd) ((ab)c)d

a(b(cd)) a((bc)d) (a(bc))d

≃

≃

≃ ≃

≃

If our choice of homotopies should be coherent, going around the loop should be
homotopic to the identity homotopy. Our associative structure should therefore
include homotopies realizing these coherence conditions.

Continuing like this for multiplication of more and more elements, we get
our definition should involve a lot of choice of homotopies, ensuring that our as-
sociative structure is coherent. This can be recorded in the following definition.

Definition 2.1. Let C be a ∞-category with finite products (including a final
object ∗). A Cartesian monoid X in C is a simplicial object in C with
1) X0 ≃ ∗
2) X Satisfies the Segal condition, that is the maps ei : [1] → [n] given by

2

ei(0) = i− 1, ei(1) = i, induce an equivalence

Xn →
n∏

i=1

X1

A monoid X with X1 = M is also called a monoid structure on M .
The category Mon(C) ⊆ Fun(∆op, C) is the full subcategory spanned by the
monoids in C.

In the case C = Cat∞, we get a monoidal ∞-category. When we have in-
troduced ∞-operads, we will later see that a Cartesian monoid in C is the same
as an associative- or E1-monoid in C with the Cartesian symmetric monoidal
structure.

This matches our earlier definition of a monoid. We think of X1 as the
underlying object of the monoid. The map X0 → X1, induced by the map
[1] → [0] defines the unit element. We obtain the multiplication of n copies of
X1 by

n∏
i=1

X1
∼←− Xn → X1,

where the left-hand map is the inverse coming from the Segal condition, and the
right-hand map comes from the map [1]→ [n], sending 0→ 0 and 1→ n. All of
the required homotopies come from the maps in the simplicial structures. For
instance, let us consider multiplication with the unit for a Cartesian monoid in
Set

X1 ×X0
(id,s0)−−−−→ X1 ×X1

µ−→ X1.

The first step of the multiplication sends the pair (f, u), where u ∈ X1 is the
image of the unit map, to the unique simplex

0

1 2.

f

s0(u)

However this is exactly s1f , and applying d1 to finish the multiplication, we get
d1s1f = f , showing that u acts a unit.

Groups are then defined as monoids with an extra property.

Definition 2.2. A Cartesian monoid in C is a Cartesian group if the shear
map

(pr1, ∗) : X1 ×X1 → X1 ×X1

given by (a, b)→ (a, a ∗ b) is an equivalence.
The category Grp(C) ⊆ sC is the full subcategory spanned by the groups in C.

3

Remark 2.3. Unlike associativity (and commutativity in the future), making a
monoid into a group does not require extra structure of homotopies, but instead
require a certain map to be a equivalence. Therefore being a group is a property
of a monoid and not a structure.

Remark 2.4. A monoid M in An is a group if and only if π0(M) is a group
in Set.

Example 2.5 (Loop space). Let (X,x) be a pointed anima. The loop space
Ω(X,x) ⊆ Map(|∆1|, X) is the subspace of the maps, which sends the vertices
to the basepoint.
The loop space has a simplicial structure by letting Ω(X,x)n ⊆ Map(|∆n|, X)
be the subspace of maps sending vertices to basepoint, and letting the simplicial
structure coming from Map(| − |, X) ∈ sAn.

We have Map(|∆0|, X) ≃ ∗ and Map(|∆n|, X) ≃ Map(|∆1|, X)n since the
maps are determined on the spines of the simplexes. We therefore get a monoid
structure given by loop concatenation.

From a first course in algebraic topology we recall that π0(Ω(X,x)) is a group,
showing that Ω(X,x) is a E1-group.

2.2 Commutative monoids and groups

The ∞-categorical version of commutative monoids is E∞-monoids, which we
will define here. As in the case of associativity, we need coherent homotopies en-
coding the commutativity. This can be encoded in a similar way to E1-monoids,
as ∆op gives us associativity, but since the order cannot be reversed in maps in
∆op it does not encode swapping elements in our multiplication. Therefore we
need a bigger source category.

Definition 2.6. Let Fin∗ be the category of finite pointed sets and basepoint-
preserving maps. ⟨n⟩ denotes the object {∗, 1, ..., n} with basepoint ∗.

We have a functor/simplicial set Cut : ∆op → Fin∗ which on objects is given
by [n] → ⟨n⟩, and on morphisms by sending the opposite αop of a morphism
α : [m]→ [n] to

Cut(αop)(i) =


∗ i ≤ α(0)

j α(j − 1) < i ≤ α(j)

∗ α(n) < i

This functor can also be described as ∆1/∂∆1 as there are n+2 maps ∆n → ∆1,
n surjective maps, and 2 maps which sends everything to one of the vertices,
so they both is the morphism to the basepoint on the quotient ∆1/∂∆1. It can
then be checked that ∆1/∂∆1 agrees with Cut agrees on morphisms.

4

Definition 2.7. Let C be an ∞-category with finite products. A Cartesian com-
mutative monoid X in C is a functor Fin∗ → C, such that X ◦Cut is a Cartesian
monoid.

A commutative monoid X in C is a commutative group in C, if X ◦Cut is a
E1-group.

We write CMon(C) and CGrp(C) for the full subcategories of Fun(Fin∗, C)
spanned by the commutative monoids and commutative groups respectively. A
commutative monoid in Cat∞ is a symmetric monoidal ∞-category.

Example 2.8 (Cartesian symmetric monoidal category). A symmetric monoidal
structure on a ∞-category C is called Cartesian if the following conditions are
satisfied:

1. The unit object 1C is final.

2. For every pair of objects C,D ∈ C, the maps

C ≃ C ⊗ 1C ← C ⊗D → 1C ⊗D ≃ D

exhibit C ⊗D as a product in C.

By [Lur17, Cor. 2.4.1.9] if an ∞-category C has finite products, then it has an
unique Cartesian symmetric monoidal structure up to equivalence, denoted by
C×. This is the monoidal structure on An we will use in the rest of these notes.

2.3 ∞-Operads and modules

With ∞-operads we can give a general framework for algebraic objects in a
symmetric monoidal ∞-category. Recall that a map in Fin∗ is inert, if it is
a bijection when restricted to the points not mapping to the basepoint. The
subcategory with only the inert maps is denoted by (Fin∗)int.

Definition 2.9. A (multicolored and symmetric) ∞-operad (in anima) is a
functor p : O → Fin∗ of ∞-categories satisfying the following conditions:

1. Every inert in Fin∗ has cocartesian lifts with arbitrary sources.

2. The cocartesian unstraightening of O : (Fin∗)int → Cat∞ satisfies the
Segal condition.

3. Let x, y ∈ O with p(x) = ⟨m⟩ and p(y) = ⟨n⟩. By (b), we can write
y ≃ (y1, ..., yn) for some y1 ∈ O1. Then we require that the diagram

homO(x, y)
∏n

i=1 homFin∗(x, yi)

∏n
i=1 homFin∗(⟨m⟩, ⟨n⟩)

∏n
i=1 homFin∗(⟨m⟩, ⟨1⟩)

p p

(ρ1,...,ρn)

(ρ1,...,ρn)

5

The ∞-category Op∞ is the (non full) subcategory of Cat∞/Fin∗ spanned by
the ∞-operads and by the functors which preserve inert morphism.

The fiber of ⟨1⟩ of an ∞-operad O denoted O1 is the underlying category of
the∞-operad. The objects of this category is then the colours of the∞-operad.

More informally an∞-operad gives an collection of objects given by O1, and
spaces of operations between the different objects. A single-coloured ∞-operad
is then an object A along with spaces of operations A⊗n → A and with compo-
sition of these operations given by maps.

In this way an ∞-operad determines a certain structure of operations. An
algebra over an ∞-operad is then an collection of objects realizing these opera-
tions.

Definition 2.10. Given an∞-operad O and a symmetric monoidal∞-structure
C⊗, we have

AlgO(C
⊗) = FunOp∞(O, C⊗)

This is the ∞-category of O-algebras in C.

Example 2.11. The best way to understand ∞-operads and their algebras is to
see some examples.

• The algebras over the ∞-operad id : Fin∗ → Fin∗ is the commutative
(or E∞) monoids. CMon(C⊗) := AlgO(C⊗). When C has the Cartesian
symmetric monoidal structure, this agrees with our previous definition.

• Similarly, the∞-operad A ssoc gives the associative (or E1) monoids Mon(C⊗) :=
AlgO(C⊗)

• An algebra over the multicolored LMod is a pair (A,M), where A is an as-
sociative monoid and M has an action of A which has coherent homotopies
making the multiplications compatible in the way (a1a2)m ≃ a1(a2m). The
∞-operad RMod is defined analogously with a right action. We denote
their categories of algebras by RMod(C⊗) and LMod(C⊗).

Example 2.12 (Modules in discrete categories). We can recall what these no-
tions mean in some familiar discrete categories.
In the symmetric monoidal category Set× a right module is an associative
monoid A with an action on a set M or a A-set.

In the symmetric monoidal category Ab⊗ a right module is a ring R and a
R-module.

We will give some properties of RMod(C). Given a monoid A, we can con-
sider it as a free module over itself, where the action is given by multiplication.
We will denote the free module by A′ for a monoid A.

6

We have a forgetful functor RMod(C) → Mon(C) given by forgetting the
module M of the pair (A,M) . From this we define RModA(An) by the Carte-
sian square

RModA(An) RMod(An)

{A} Mon(An)

Where the lower map is the inclusion of A in Mon(An). In other words it is
the full subcategory of RMod(An) of modules over A.

3 The Recognition Principle for E1-Groups.

We are now ready to prove the recognition principle for E1-groups. Note that
the loop space defined in 2.5 is a functor Ω : (∗/An)≥1 → Grp(An).

Theorem 3.1. There is a functor B, such that Ω and B are inverses

GrpE1
(An) (An∗)≥1.

B

Ω

Remark 3.2. Both of these ∞-categories have monoidal structure coming from
the Cartesian structure on An. Ω preserves products since it is a right adjoint,
and it turns out B also preserves products. Therefore when we have shown the
∞-categories are equivalent, it upgrades to a equivalence of monoidal categories.

To prove this, we will construct the inverse B sending a group to its classi-
fying space. In other proofs, B is constructed by the bar construction. We will
give another construction of B, which reflects the geometric properties the classi-
fying space should have, and which fits into the larger theory of Higher Algebra.

We have a functor
Θ∗ : Mon(An)→ (Cat∞)∗

sending a monoid A ∈ Mon(An) to RModA(An) with basepoint the free module
A′.
Lurie define this functor in more generality in Higher Algebra and gives the
construction [Lur17, Section 4.8.3].

If we take the composition of Θ∗ with the core functor, which takes the
maximal anima of an ∞-category, and afterwards the truncation functor τ1≥
taking a pointed anima to the path component containing the basepoint, we get
a functor

B : Grp(An)→ (∗/An)1≥

7

if we restrict it to groups. This can also been seen by the diagram

Grp(An) An∗ (An∗)≥1

Mon(An) (Cat∞)∗

B

τ1≥

Θ∗

core

Sending a E1-group G to the pointed connected anima τ1≥(RMod
∼=
G, G

′). We
will show it is an inverse to Ω.

3.1 Groups are loop spaces

We will give a natural isomorphism ΩB ∼= idGrp(An), so we construct a natural
isomorphism Ω(BG,G′) ∼= G for an E1-group.

First we will give an alternative description of Ω as the endomorphism space
of the basepoint (this is not true for based infinity categories). This can be seen
since they correspond to the same subsets of

Map(|∆1|, |X|) ≃ Map(∆1,Sing(|X|)) ≃ Map(∆1, X)

The endomorphism space only depend on the path component of the base-
point so

Ωτ1≥(RMod
∼=
G, G

′) ∼= Ω(RMod
∼=
G, G

′)

If we can show that Ω(RModG, G
′) ∼= G, then since G is a group, all of the

endomorphisms are automorphisms, and so taking the core would not change
the endomorphism space

Ω(RMod
∼=
G, G

′) ≃ Ω(RModG, G
′) ≃ G

We will therefore prove that EndG(G
′) ≃ G.

Note that this looks a lot like statements we have in ordinary algebra, where
the endomorphisms of a free R-module is R and the same for a free G-set for a
group G.

First we note that the endomorphism object has a universal property:
For every D ∈ An, tensoring with G′ gives a functor L(D) = D ⊗ G′. This
functor lands in RModG since it has the action on the right

(D ⊗G′)⊗G ≃ D ⊗ (G′ ⊗G)→ D ⊗G′

There is a map EndG(G
′)⊗G′ → G′ such that the composition

MapAn(D,EndG(G
′))→ MapRModG

(D ⊗G′,EndG(G
′)⊗G′)→ MapRModG

(D ⊗G′, G′))

is an equivalence.
We will show that G with the multiplication map G′ ⊗G→ G′ defining the

module structure has this universal property.

8

Using Corollary 4.2.4.8 in [Lur17], tensoring with G′ is left adjoint to the
forgetful functor F : RModG → An with the counit map FM ⊗G′ →M given
by the multiplication map.
From this we get that the universal property above matches the universal prop-
erty of the adjoint.

MapAn(D,G) ≃MapAn(D,FG′) ≃MapRMod(G)(D ⊗G′, G′)

Showing that it has the wanted universal property. This shows that EndG(G
′) ≃

G, and that they act the same way on G′. However from Lemma 4.8.5.7
in [Lur17] this is enough to also conclude, that they are equivalent as alge-
bra objects in Anima. In conclusion we get an equivalence Ω(RModG, G

′) ≃ G
as E1-groups, given the first implication.

3.2 Loop spaces are classifying spaces of Groups

We now have to show the isomorphism BΩ(X,x) ∼= (X,x). First we will find
another description of RModΩX(An) which is easier to relate to (X,x).
Indeed this ∞-category is equivalent to (Fun(X,An), y(x)), where y : X →
Fun(X,An) is the Yoneda Embedding.
An intuition for this comes from (Un-)Straightening. From it we get an equiv-
alence

Fun(X,An) ≃ LFib(X).

Given a fibration F → E → X, we have an action Ω(X,x) ⟳ F , making F into
an Ω(X,x)-module and as such an element of RModΩX(An).

To prove it we will use proposition 4.8.5.8 in [Lur17], which gives a criteria
for an∞-category to be equivalent to a module category. The proposition given
below in the special case of modules in An, which is the case we need.

Theorem 3.3. Let M be a ∞-category left tensored over An, and M ∈ M.
Then there exist an E1-monoid A such that RModA ≃ M, by an equivalence
carrying A′ to M if the following criteria is satisfied:

1. M admits geometric realizations.

2. The action map An⊗M→M preserves geometric realizations.

3. The functor F : An→M given by F (B) = B ⊗M admits a right adjoint
G which preserves geometric realizations.

4. The functor G is conservative.

5. For every object N ∈M and B ∈ An the adjoint of the map

F (B ⊗G(N)) ≃ B ⊗G(N)⊗M ≃ B ⊗ FG(N)→ B ⊗N

is an equivalence.

9

Corollary 3.4. There exists a based equivalence

(RModΩ(X,x)(An),Ω(X,x)) ≃ (Fun(X,An), γ(x))

Proof. We will prove it from Theorem 3.3. First we recall Fun(X,An) has a
symmetric monoidal structure given by the objectwise monoidal structure on
An. From the inclusion An ↪→ Fun(X,An) we get that it is left tensored over
An. We have Fun(X,An) has geometric realizations by the objectwise geometric
realization in An.

For the action map An⊗Fun(X,An)→ Fun(X,A) , and a simplicial object
S ∈M we have

(|A⊗ S|)(x′) = colim∆op(A× Sn)(x
′) ≃ A× colim∆op(Sn)(x

′) ≃ (A⊗ |S|)(x′)

since the colimit is sifted, so it commutes with finite products, Showing it pre-
serves geometric realizations.
The functor F (B) = B ⊗ y(x) has a right adjoint G : M → An given by
G(T) = MapFun(X,An)(y(x), T). We have to show that G is conservative.
So assume Map(y(x), T) ≃ Map(y(x), T ′). This implies Map(D,T) ≃ Map(D,T ′),
for all D ∈ Fun(X,An). Indeed from the Density Theorem 5.3 every functor
D ∈ Fun(X,An) is a colimit of representable functors y(x′), and sinceX is a con-
nected anima, every point is connected by a path to x, and as such y(x) ≃ y(x′).
From this we get

Map(D,T) ≃ limMap(y(x), T) ≃ limMap(y(x), T ′) ≃ Map(D,T ′)

For every D ∈ Fun(X,A), so by the Yoneda lemma, T and T ′ are equivalent.
Lastly we show that the map in the last criteria is adjoint to an equivalence.
This map is

B ×Map(y(x), N)→ Map(y(x), B ⊗N)

However from the Yoneda lemma again we get that this map corresponds to

B ×N(x)→ (B ×N)(x)

which is an equivalence.

Summarising the situation, we have the diagram

(Fun(X,An), y(x)) (RModΩX ,ΩX ′)

(X,x) (BΩX,ΩX ′).

≃

y

We want an equivalence in the bottom row. Now sinceX is connected, the image
is also connected, so the Yoneda embedding with the equivalence, is contained

10

in the path component of the basepoint of the core, and as such the image lands
in BΩX.
Since both the Yoneda embedding and the equivalence is fully faithful, we get
that the restriction is a fully faithful functor (X,x) → (BΩX,ΩX ′). The last
thing we need is the functor to be essentially surjective. However since every ob-
ject in the target is connected by isomorphisms, any functor from a non-empty
category is essentially surjective.

We now have the wanted equivalence between (X,x) and (BΩX,ΩX ′), and
so B and Ω are inverse functors.

4 Spectra and their homotopy groups

We have now shown the Recognition Principle for E1-groups, and we have cor-
responding statements for En-groups and E∞-groups. However we still need to
describe what En-monoids are, which are more commutative than E1-monoids,
and less than E∞-monoids. To understand this we will first recall the situation
in 1-categories.

4.1 Reminder of Eckman-Hilton Argument

We will first give a reminder of the Eckman-Hilton Argument. In an 1-category,
if we have an object with two compatible monoid structures, in the sense that
the one multiplication is a homomorphism of the other multiplication structure

X ×X → X,

which written with elements means

(a× b) · (c× d) = (a · c)× (b · c).

In this case the two multiplications agree, and they are commutative.
We can draw a visual proof inspired by the case π2(X) = π(Ω2X) where we
have two operations, horizontal composition and vertical composition.

a b
a

b b

a a

b *

**

*
b a

This shows that up to homotopy the operations agree, and is commutative.
However if we move to ∞-categories, where we remember our choice of homo-
topy, we start to see some problems arise. If we take the other homotopy

a b
a

b*

* a

b b

a*

*
ab

11

There is not a 2-homotopy between these two 1-homotopies for a general X.
Therefore the space of multiplications of two elements in Ω2X is connected, but
not simply connected.
If we instead take Ω3X, we have another dimension to move around in, and
the space of composition will then be simply connected, but in general have
nontrivial π2-groups.
In conclusion we see that ΩkX is more commutative than an E1-monoid, but
less commutative than an E∞-monoid, where the space of multiplications is
contractible, which leads us to the definition of En-monoids.

4.2 En-monoids

From the above considerations, En-monoids should have a multiplication struc-
ture corresponding to the n’th iterated loop space. This leads us to the definition
of the n’th little cubes∞-operad En. Informally this operad, describes an opera-
tion, where the space of multiplications of k elements is given by the embedding
of k n-cubes inside an n-cube.

a
b

c d

Figure 1: A multiplication of 4 elements a,b,c,d for n = 2.

The composition of two multiplications is given by embedding the cubes of
the first operation into the other

a
b

c d

b

c d

e

f

e

f◦a =

Figure 2: The composition of two multiplications

Note that this is modelled exactly as how multiplication works in ΩnX , and
as such ΩnX, is the obvious example of an En-monoid1.

1The Recognition Principle for En-groups will exactly show us that every such group arises
as a n’th iterated loop space. On a historical note, operads were invented to exactly describe
the multiplication structure of the iterated loop space, so this is the prototypical example of
why we need (∞-)operads!

12

We give some properties of En-monoids. Firstly we will look closer at the
space of multiplications. First note that the space of embedding of k cubes in
[0, 1]n is homotopic to the space of the embedding of k points in [0, 1]n, by shrink-
ing each cube to their center. This is the configuration space Conk([0, 1]

n).

In the case k = 2, we have that the configuration space is homotopy equiva-
lent to Sn−1. The map to Sn−1, can be seen by considering the half-line between
the two points and is intersection with the circle around the cube, as illustrated
below in the case k = 2.

a
b

Figure 3: The map giving the homotopy equivalence between Con2([0, 1]
2) and

S1.

From this we see that the space of multiplication of two elements for an
En-monoid is (n− 2)-connected.

We now have two definitions of E1-monoids, and we will show they agree.
In our first description, we have homotopies giving us associativity, but no ho-
motopies for commutativity, and as such the space of possible multiplications
of k elements, consists of a contractible component for each permutation of k
elements.
However the space Conk([0, 1]) has a component for each permutation σ ∈ Sk

given by {f : {k} → [0, 1]|f(xσ(1)) < f(xσ(2)) < ... < f(xσ(k)))}, since we
cannot change the order of the points by a homotopy without moving them
over each other. Furthermore each of these components are contractible, so the
space of multiplications for both structures are homotopy equivalent, showing
they agree.

Note that for an embedding f of k n-cubes in an n-cube, we can get an
embedding f × id[0,1] of k (n + 1)-cubes in a (n + 1)-cube. This gives a map
from the operad En to En+1, and as such a functor

MonEn+1
(C) ≃ FunOp∞(En+1, C)→ FunOp∞(En, C) ≃ MonEn

(C)

13

Forgetting some of the commutative structure.

We can take the limit over these functors limn MonEn
(C). In other words, it

is the category of objects with a En-monoid structures for each n, which agree.

Theorem 4.1. Given a symmetric monoidal ∞-category C, there is an equiva-
lence

lim
n

MonEn
(C) ≃ MonE∞(C)

We will not prove the theorem formally, but we can see the space of multi-
plication of two elements are the same. For E∞-monoids the space of multipli-
cations is contractible. limn MonEn

(C) is given by the ∞-operad colimEn, and
as such the space of multiplications is colimSn = S∞, which is a contractible
space, showing they agree.

Lastly, based on our earlier discussion, there is a corresponding statement
of the Eckmann-Hilton argument, but as we saw earlier two monoid structures
is not enough to buy full commutativity. Instead we have the statement of
Dunn Additivity (Theorem 1.2.2 Derived Algebraic Geometry VI: E[k]-Algebras,
Lurie)

Theorem 4.2. For a symmetric monoidal ∞-category and m,n ∈ N ∪ {∞},
there is an equivalence

MonEm(MonEn(C)) ≃ MonEm+n(C)

Remark 4.3. There is a symmetric monoidal structure on MonEn
(C), so there-

fore we can define Em-monoids for this category. Also note that if either of the
operations are E∞, the resulting operation is also E∞.

Example 4.4 (Dunn additivity for discrete monoids). We can recover the
Eckmann-Hilton argument from Dunn Additivity. Viewing a monoid in set as a
E1-monoid, if it can be extended to a E2-structure, there is a path hom(a∗b, b∗a).
However since the space is discrete, they must agree on the nose showing that
it is abelian.

As with commutative monoids, we have that a En-monoid is a group, if its
underlying structure as a E1-monoid is a En-group. This gives full subcategories
GrpEn

(An) ⊆ MonEn
(An), and the above theorems apply equally for groups

instead of monoids.

4.3 Proof of Recognition Principle for En-Groups

We now have the tools to prove the Recognition Principle for En-groups

14

Theorem 4.5. The functors

GrpEn
(An) (An∗)≥n

Bn

Ωn

are inverses and monoidal.

Proof. Given we already proved case of E1-groups, the n’th case follow by in-
duction. So assume that statement is true for n. We then have a diagram

GrpEn
(An) (An∗)≥n

Bn

Ωn

Since the functors are monoidal we get a further equivalence

GrpE1
(GrpEn

(An)) GrpE1
((An∗)≥n)

Bn

Ωn

From Dunn Additivity, the left side is equivalent to GrpEn+1
(An). The right

side is equivalent to (An∗)n+1≥, since the functors B,Ω restricts to an equiva-
lence between GrpE1

((An)≥n) and (An∗)≥n+1 since B and Ω shifts homotopy
groups by 1. We then have diagram of monoidal equivalences

GrpEn+1
(An) (An∗)≥n+1

GrpE1
(GrpEn

(An)) GrpE1
((An∗)≥n)

Ωn

Bn

≃ B Ω

Taking the composition of these we get

GrpEn+1
(An) (An∗)≥n+1

GrpE1
(GrpEn

(An)) GrpE1
((An∗)≥n)

Ωn

Bn

≃ B Ω

Bn+1

Ωn+1

showing the induction step.

15

4.4 Proof of the Recognition Principle for E∞-groups

The last version of the Recognition principle is for commutative groups.

Theorem 4.6. The functors

GrpE∞
(An) Sp≥0

B∞

Ω∞

are inverses and monoidal where

Sp = lim(· · · Ω−→ An∗
Ω−→ An∗)

and Sp≥0 is the sub-∞-category consisting of spectra with no negative homotopy
groups ie. the first anima is 0-connected, and each delooping is one level more
connected.

Proof. It turns out that we almost get the proof for free from the n’th case. By
constructing the diagrams from that proof, but forgetting the monoid structure
in the lower row we get a tower of compatible equivalences

GrpE3
(An) (An∗)≥3

GrpE2
(An) (An∗)≥2

GrpE1
(An) (An∗)≥1.

Ω2

B2

Ω

B3

Ω3

Ω

B

Ω

which continues upwards. Since all the morphisms are compatible, we get an
equivalence on the limits between limn GrpEn

(An) ≃ GrpE∞
(An) and Sp≥0.

Example 4.7 (Eilenberg Maclane Space). Given an abelian group A, B∞A is
the Eilenberg-Maclane spectra

K(A) = (K(A, 0),K(A, 1),K(A, 2), ...).

Note that the base space Ω∞K(A) ∼= K(A, 0) is just the abelian group A.

16

5 Appendix: ∞-Categories and Anima

We will here define some of the general notions in ∞-categories we will use.

Definition 5.1 (Anima). An anima is an ∞-groupoid, and the ∞-category An
is the full subcategory of Cat∞ consisting of ∞-groupoids.

Anima can also be thought of as the homotopy types of spaces/CW com-
plexes, and as such we will use both words anima or space to denote the objects
of An, depending on how we want to view it. In ∞-categories, An has a similar
role to what Set is for 1-categories. The ∞-categorical version of the Yoneda
Lemma is an example of this.

Theorem 5.2 (Yoneda Lemma). Let C be an ∞-category. Given a functor
F : C → An and an object x ∈ C, the evaluation map

evidx
: Nat(homC(x,−), F)→ F (x)

is an equivalence. Furthermore we have fully faithful functors given by the
Yoneda Embedding

Proof. [Lur09, Proposition 5.1.3.1]

Theorem 5.3 (Density Theorem). Let S be a small simplicial set and let C
be an ∞-category which admits small colimits. Composition with the Yoneda
embedding y, induce a equivalence

FunL(P(S), C) ≃ Fun(S, C)

where FunL is the∞-category of colimit preserving functors, and P(S) = Fun(Sop,An)
is the ∞-category of presheaves. The inverse is given by left Kan extension.

Proof. [Lur09, Theorem 5.1.5.6]

Applying this to id : P(S)→ P(S), we get that idP(S) is isomorphic to the
left Kan extension of the Yoneda embedding. Since Kan Extension is pointwise
given by colimits, we then get that P is generated by colimits of the representable
functors.

Theorem 5.4. There is an equivalence of ∞-categories

Fun(C,An)→ LFib(C)

Proof. [Lur09, Section 3.2]

References

[Lur09] Jacob Lurie. Higher Topos Theory. Annals of mathematics studies.
Princeton University Press, 2009.

[Lur17] Jacob Lurie. Higher Algebra. 2017.

[Wag20] Ferdinand Wagner. Algebraic and hermitian k-theory. 2020.

17

